Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1340188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455658

RESUMO

Introduction: Fabry's disease (FD) is a genetic X-linked systemic and progressive rare disease characterized by the accumulation of globotriaosylceramide (GB3) into the lysosomes of many tissues. FD is due to loss-of-function mutations of α-galactosidase, a key-enzyme for lysosomal catabolism of glycosphingolipids, which accumulate as glycolipid bodies (GB). In homozygous males the progressive deposition of GB3 into the cells leads to clinical symptoms in CNS, skin, kidney, etc. In testis GB accumulation causes infertility and alterations of spermatogenesis. However, the precise damaging mechanism is still unknown. Our hypothesis is that GB accumulation reduces blood vessel lumen and increases the distance of vessels from both stromal cells and seminiferous parenchyma; this, in turn, impairs oxygen and nutrients diffusion leading to subcellular degradation of seminiferous epithelium and sterility. Methods: To test this hypothesis, we have studied a 42-year-old patient presenting a severe FD and infertility, with reduced number of spermatozoa, but preserved sexual activity. Testicular biopsies were analyzed by optical (OM) and transmission electron microscopy (TEM). Activation and cellular localization of HIF-1α and NFκB was analyzed by immunofluorescence (IF) and RT-PCR on homogeneous tissue fractions after laser capture microdissection (LCMD). Results: OM and TEM showed that GB were abundant in vessel wall cells and in interstitial cells. By contrast, GB were absent in seminiferous epithelium, Sertoli's and Leydig's cells. However, seminiferous tubular epithelium and Sertoli's cells showed reduced diameter, thickening of basement membrane and tunica propria, and swollen or degenerated spermatogonia. IF showed an accumulation of HIF-1α in stromal cells but not in seminiferous tubules. On the contrary, NFκB fluorescence was evident in tubules, but very low in interstitial cells. Finally, RT-PCR analysis on LCMD fractions showed the expression of pro-inflammatory genes connected to the HIF-1α/NFκB inflammatory-like pathway. Conclusion: Our study demonstrates that infertility in FD may be caused by reduced oxygen and nutrients due to GB accumulation in blood vessels cells. Reduced oxygen and nutrients alter HIF-1α/NFκB expression and localization while activating HIF-1α/NFκB driven-inflammation-like response damaging seminiferous tubular epithelium and Sertoli's cells.


Assuntos
Doença de Fabry , Infertilidade , Adulto , Humanos , Masculino , Doença de Fabry/complicações , Doença de Fabry/patologia , Hipóxia/patologia , Infertilidade/patologia , Inflamação/complicações , Inflamação/patologia , Oxigênio , Testículo/patologia
2.
Cells ; 12(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899828

RESUMO

Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.


Assuntos
Marte , Sirtuína 3 , Ausência de Peso , Meio Ambiente Extraterreno , Músculos/metabolismo , Sirtuína 3/metabolismo , Humanos
4.
J Clin Med ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143092

RESUMO

Background: The efficacy of enzyme replacement therapy (ERT) in mobilizing globotryaosylceramide (GB-3) from Fabry cardiomyocytes is limited. The mechanism involved is still obscure. Methods: Assessment of M6Pr, M6Pr-mRNA, and Ubiquitin has been obtained by Western blot analysis and real-time PCR of frozen endomyocardial biopsy samples, from 17 pts with FD, various degree of left ventricular hypertrophy, and maximal wall thickening (MWT) from 11.5 and 20 mm. The diagnosis and severity of FDCM followed definitions of GLA mutation, α-galactosidase A enzyme activity, cardiac magnetic resonance, and left ventricular endomyocardial biopsy with the quantification of myocyte hypertrophy and the extent of Gb-3 accumulation. All patients have received alpha or beta agalsidase for ≥3 years without a reduction in LV mass nor an increase in T1 mapping at CMR. Controls were surgical biopsies from 15 patients undergoing mitral valve replacement. Results: Protein analysis showed mean M6Pr in FDCM to be 5.4-fold lower than in a normal heart (4289 ± 6595 vs. 23,581 ± 4074, p = 0.0996) (p < 0.001): specifically, 9-fold lower in males, p = 0.009, (p < 0.001) and 3-fold lower in females, p = 0.5799, (p < 0.001) showing, at histology, a mosaic of normal and diseased cells. M6Pr-mRNA expression was normal, while ubiquitin showed an increase of 4.6 fold vs. controls (13,284 ± 1723 vs. 2870 ± 690, p = 0.001) suggesting that ubiquitin-dependent post-translational degradation is likely responsible for the reduction of M6Pr in FDCM. Conclusion: M6Pr expression is remarkably reduced in FDCM as a likely result of post-translational degradation. This may explain the reduced efficacy of ERT and be a therapeutic target for the enhancement of ERT activity.

5.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012747

RESUMO

The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications. Vero E6 cells were used as a positive reference. Cells pretreated with nicotine showed a decrease of IL6 and TNFα in A549 cells induced by LPS or poly(I:C). In contrast, cells exposed to SARS-CoV-2 showed a high increase of IL6, IL8, IL10 and TNFα, high cytopathic effects that were dose- and time-dependent, and profound ultrastructural modifications. These modifications were characterized by membrane ruptures and fragmentation, the swelling of cytosol and mitochondria, the release of cytoplasmic content in extracellular spaces (including osmiophilic granules), the fragmentation of endoplasmic reticulum, and chromatin disorganization. Nicotine increased SARS-CoV-2 cytopathic effects, elevating the levels of inflammatory cytokines, and inducing severe cellular damage, with features resembling pyroptosis and necroptosis. The protective role of nicotine in COVID-19 is definitively ruled out.


Assuntos
Nicotina , SARS-CoV-2 , Células A549 , COVID-19 , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Interleucina-6 , Lipopolissacarídeos , Nicotina/efeitos adversos , Nicotina/farmacologia , Fator de Necrose Tumoral alfa
6.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745656

RESUMO

Epithelial-mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.

7.
Cells ; 10(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066961

RESUMO

Brown adipose tissue (BAT) activity plays a key role in regulating systemic energy. The activation of BAT results in increased energy expenditure, making this tissue an attractive pharmacological target for therapies against obesity and type 2 diabetes. Sirtuin 5 (SIRT5) affects BAT function by regulating adipogenic transcription factor expression and mitochondrial respiration. We analyzed the expression of SIRT5 in the different adipose depots of mice. We treated 3T3-L1 preadipocytes and mouse primary preadipocyte cultures with the SIRT5 inhibitor MC3482 and investigated the effects of this compound on adipose differentiation and function. The administration of MC3482 during the early stages of differentiation promoted the expression of brown adipocyte and mitochondrial biogenesis markers. Upon treatment with MC3482, 3T3-L1 adipocytes showed an increased activation of the AMP-activated protein kinase (AMPK), which is known to stimulate brown adipocyte differentiation. This effect was paralleled by an increase in autophagic/mitophagic flux and a reduction in lipid droplet size, mediated by a higher lipolytic rate. Of note, MC3482 increased the expression and the activity of adipose triglyceride lipase, without modulating hormone-sensitive lipase. Our findings reveal that SIRT5 inhibition stimulates brown adipogenesis in vitro, supporting this approach as a strategy to stimulate BAT and counteract obesity.


Assuntos
Adipogenia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Regulação da Expressão Gênica , Sirtuínas/antagonistas & inibidores , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Consumo de Oxigênio , Fenótipo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32167433

RESUMO

BACKGROUND: Our previous findings demonstrated that in vitro supplementation of polyphenols, extracted from seeds of red grape (Nero di Troia cultivar), to peripheral lymphomonocytes from patients affected by allergic contact dermatitis (ACD) to nickel (Ni) could reduce the release of proinflammatory cytokines and nitric oxide (NO), while increasing the levels of interleukin (IL)-10, an anti-inflammatory cytokine. OBJECTIVE: To assess whether an intervention with oral administration of polyphenols leads to a reduction of peripheral biomarkers in ACD patients. METHODS: At T0, 25 patients affected by ACD to Ni were orally administered with 300 mg polyphenols prodie extracted from seeds of red grape (Nero di Troia cultivar) (NATUR-OX®) for 3 months (T1). The other 25 patients affected by ACD to Ni received placebo only for the same period of time. Serum biomarkers were analyzed at T0 and T1. In both groups, seven dropouts were recorded. RESULTS: At T1 in comparison to T0, in treated patients, values of interferon-γ, IL-4, IL-17, pentraxin 3 and NO decreased, while IL-10 levels increased when compared with T0 values. Conversely, in placebo- treated patients, no modifications of biomarkers were evaluated at T1. CONCLUSION: Present laboratory data rely on the anti-oxidant, anti-inflammatory and anti-allergic properties of polyphenols.


Assuntos
Dermatite Alérgica de Contato/tratamento farmacológico , Imunidade/efeitos dos fármacos , Níquel/efeitos adversos , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Vitis , Administração Oral , Adulto , Dermatite Alérgica de Contato/imunologia , Método Duplo-Cego , Feminino , Humanos , Imunidade/fisiologia , Pessoa de Meia-Idade , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação
9.
Artigo em Inglês | MEDLINE | ID: mdl-32875988

RESUMO

Platelets are cellular fragments derived from bone-marrow megacaryocytes and they are mostly involved in the haemostasis and coagulation. However, according to recent data, platelets are able to perform novel immune functions. In fact, they possess a receptorial armamentarium on their membrane for interacting with innate and adaptive immune cells. In addition, platelets also secrete granules which contain cytokines and chemokines for activating and recruiting even distant immune cells. The participation of platelets in inflammatory processes will also be discussed in view of their dual role in terms of triggering or resolving inflammation. Involvement of platelets in disease will be illustrated, pointing to their versatile function to either up- or down-regulate pathological mechanisms. Finally, despite the availability of some anti-platelet agents, such as aspirin, dietary manipulation of platelet function is currently investigated. In this regard, special emphasis will be placed on dietary omega-3 polyunsaturated fatty acids (PUFAs) and polyphenol effects on platelets. Platelets play a dual role in inflammatory-immune-mediated diseases either activating or deactivating immune cells. Diet based on substances, such as omega-3 PUFAs and polyphenols, may act as a modulator of platelet function, even if more clinical trials are needed to corroborate such a contention.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Dieta , Ácidos Graxos Ômega-3/farmacologia , Imunidade Inata/efeitos dos fármacos , Estado Nutricional , Inibidores da Agregação Plaquetária/farmacologia , Polifenóis/farmacologia , Animais , Plaquetas/imunologia , Plaquetas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Valor Nutritivo
10.
Artigo em Inglês | MEDLINE | ID: mdl-32875991

RESUMO

Despite the evidence that plants do not possess sessile cells, they are able to mount a vigorous immune response against invaders or under stressful conditions. Plants are endowed with pattern recognition receptors (PPRs) which perceive damage-associated molecular patterns and microbe- associated molecular patterns or pathogen-associated molecular patterns (PAMPs), respectively. PPR activation leads to either the initiation of PAMP-triggered immunity (PTI) (early response) or the effector-triggered immunity (ETI). Both PTI and ETI contribute to plant systemic acquired resistance as an expression of immunological memory or trained immunity. PTI is initiated by activation of both receptor-like kinases and receptor-like proteins, while ETI depends on nucleotide- binding leucine-rich-repeat protein receptors for microbe recognition. Plant chloroplasts contribute to both PTI and ETI through the production of peptides, which act as hormones or phytocytokines. Salicylic acid, jasmonic acid and ethylene are the major compounds involved in plant defense. The interaction between plant receptors and/or their products and bacterial components will be discussed. Also, emphasis will be placed on plant microbiome for its contribution to plant immune response. Finally, the mutual interplay between insects and plants will also be illustrated. A better knowledge of plant immunity may pave the way for the exploitation of plant derivatives in the field of agriculture and medicine, as well.


Assuntos
Moléculas com Motivos Associados a Patógenos/imunologia , Imunidade Vegetal , Plantas/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Bactérias/imunologia , Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Memória Imunológica , Insetos/imunologia , Insetos/metabolismo , Microbiota , Moléculas com Motivos Associados a Patógenos/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Plantas/parasitologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
11.
Pharmacol Ther ; 221: 107748, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245993

RESUMO

Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.


Assuntos
Autofagia , Mitofagia , Neoplasias , Sirtuínas , Animais , Autofagia/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Sirtuínas/farmacologia
12.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709015

RESUMO

Cardiomyopathies are myocardial disorders in which heart muscle is structurally and/or functionally abnormal. Previously, structural cardiomyocyte disorders due to adrenal diseases, such as hyperaldosteronism, hypercortisolism, and hypercatecholaminism, were misunderstood, and endomyocardial biopsy (EMB) was not performed because was considered dangerous and too invasive. Recent data confirm that, if performed in experienced centers, EMB is a safe technique and gives precious information about physiopathological processes implied in clinical abnormalities in patients with different systemic disturbances. In this review, we illustrate the most important features in patients affected by primary aldosteronism (PA), Cushing's syndrome (CS), and pheochromocytoma (PHEO). Then, we critically describe microscopic and ultrastructural aspects that have emerged from the newest EMB studies. In PA, the autonomous hypersecretion of aldosterone induces the alteration of ion and water homeostasis, intracellular vacuolization, and swelling; interstitial oedema could be a peculiar feature of myocardial toxicity. In CS, cardiomyocyte hypertrophy and myofibrillolysis could be related to higher expression of atrogin-1. Finally, in PHEO, the hypercontraction of myofilaments with the formation of contraction bands and occasional cellular necrosis has been observed. We expect to clear the role of EMB in patients with cardiomyopathies and adrenal disease, and we believe EMB is a valid tool to implement new management and therapies.


Assuntos
Doenças das Glândulas Suprarrenais/complicações , Doenças das Glândulas Suprarrenais/patologia , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Doenças das Glândulas Suprarrenais/diagnóstico , Doenças das Glândulas Suprarrenais/metabolismo , Aldosterona/metabolismo , Animais , Biópsia , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Catecolaminas/metabolismo , Endocárdio/metabolismo , Endocárdio/patologia , Humanos , Hidrocortisona/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia
13.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290386

RESUMO

Tumor hypoxic microenvironment causes hypoxia inducible factor 1 alpha (HIF-1α) activation and necrosis with alarmins release. Importantly, HIF-1α also controls the expression of alarmin receptors in tumor cells that can bind to and be activated by alarmins. Human tumor tissues possess 1-2% of cancer stem cells (CSCs) residing in hypoxic niches and responsible for the metastatic potential of tumors. Our hypothesis is that hypoxic CSCs express alarmin receptors that can bind alarmins released during necrosis, an event favoring CSCs migration. To investigate this aspect, glioblastoma stem-like cell (GSC) lines were kept under hypoxia to determine the expression of hypoxic markers as well as receptor for advanced glycation end products (RAGE). The presence of necrotic extracts increased migration, invasion and cellular adhesion. Importantly, HIF-1α inhibition by digoxin or acriflavine prevented the response of GSCs to hypoxia alone or plus necrotic extracts. In vivo, GSCs injected in one brain hemisphere of NOD/SCID mice were induced to migrate to the other one in which a necrotic extract was previously injected. In conclusion, our results show that hypoxia is important not only for GSCs maintenance but also for guiding their response to external necrosis. Inhibition of hypoxic pathway may therefore represent a target for preventing brain invasion by glioblastoma stem cells (GSCs).


Assuntos
Glioblastoma/etiologia , Glioblastoma/metabolismo , Hipóxia/metabolismo , Necrose/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-32250234

RESUMO

BACKGROUND & OBJECTIVES: In old people, both innate and adaptive immune responses are impaired, thus leading to a condition of systemic inflamm-ageing, even including the involvement of the central nervous system (CNS). AIMS: Here, main mechanisms of the immune ageing and neuro-inflammation will be discussed along with the dietary approaches for the modulation of age related diseases. DISCUSSION: Neuroinflammation is caused by the passage of inflammatory mediators through the brain blood barrier to CNS. Then, in the brain, antigenic stimulation of microglia and/or its activation by peripheral cytokines lead to a robust production of free radicals with another wave of proinflammatory cytokines which, in turn, causes massive neuronal damage. Also, infiltrating T cells [T helper (h) and T cytotoxic cells] contribute to neuronal damage. Additionally, a peripheral imbalance between inflammatory Th17 cells and anti-inflammatory T regulatory cells seems to be prevalent in the aged brain, thus leading to a proinflammatory profile. Alzheimer's disease, Parkinson's disease and multiple sclerosis will be described as typical neurodegenerative diseases. Finally, modulation of the immune response thanks to the anti-oxidant and anti-inflammatory effects exerted by dietary products and nutraceuticals in ageing will be discussed. Special emphasis will be placed on polyunsaturated fatty acids, polyphenols, micronutrients and pre-probiotics and synbiotics. CONCLUSION: Ageing is characterized by an imbalance subversion of the immune system with a condition of inflamm-ageing. Neuroinflammation and neurodegenerative diseases seem to be a central manifestation of a peripheral perturbation of the immune machinery. Dietary products and nutraceuticals may lead to a down-regulation of the oxidative and pro-inflammatory profile in ageing.


Assuntos
Encéfalo/imunologia , Dieta Saudável/métodos , Imunossenescência/fisiologia , Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa/fisiologia , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Dieta/métodos , Suplementos Nutricionais , Humanos , Imunidade Inata/fisiologia , Inflamação/dietoterapia , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Linfócitos T/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-31782370

RESUMO

BACKGROUND: Heavy metals [arsenic, aluminium, cadmium, chromium, cobalt, lead, nickel (Ni), palladium and titanium] are environmental contaminants able to impact with host human cells, thus, leading to severe damage. OBJECTIVE: In this review, the detrimental effects of several heavy metals on human organs will be discussed and special emphasis will be placed on Ni. In particular, Ni is able to interact with Toll-like receptor-4 on immune and non-immune cells, thus, triggering the cascade of pro-inflammatory cytokines. Then, inflammatory and allergic reactions mediated by Ni will be illustrated within different organs, even including the central nervous system, airways and the gastrointestinal system. DISCUSSION: Different therapeutic strategies have been adopted to mitigate Ni-induced inflammatoryallergic reactions. In this context, the ability of polyphenols to counteract the inflammatory pathway induced by Ni on peripheral blood leukocytes from Ni-sensitized patients will be outlined. In particular, polyphenols are able to decrease serum levels of interleukin (IL)-17, while increasing levels of IL- 10. These data suggest that the equilibrium between T regulatory cells and T helper 17 cells is recovered with IL-10 acting as an anti-inflammatory cytokine. In the same context, polyphenols reduced elevated serum levels of nitric oxide, thus, expressing their anti-oxidant potential. Finally, the carcinogenic potential of heavy metals, even including Ni, will be highlighted. CONCLUSION: Heavy metals, particularly Ni, are spread in the environment. Nutritional approaches seem to represent a novel option in the treatment of Ni-induced damage and, among them, polyphenols should be taken into consideration for their anti-oxidant and anti-inflammatory activities.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Doença Ambiental , Metais Pesados/toxicidade , Níquel/toxicidade , Terapias em Estudo , Animais , Dermatite Alérgica de Contato/diagnóstico , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/terapia , Doença Ambiental/diagnóstico , Doença Ambiental/etiologia , Doença Ambiental/terapia , Humanos , Terapias em Estudo/métodos , Terapias em Estudo/tendências
16.
Oxid Med Cell Longev ; 2019: 7935310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346362

RESUMO

Amyloidoses are heterogeneous diseases that result from the deposition of toxic insoluble ß-sheet fibrillar protein aggregates in different tissues. The cascade of molecular events leading to amyloidoses and to the related clinical manifestations is not completely understood. Nevertheless, it is known that tissue damage associated to this disease involves alteration of tissue architecture, interaction with cell surface receptors, inflammation elicited by the amyloid protein deposition, oxidative stress, and apoptosis. However, another important aspect to consider is that systemic protein massive deposition not only subverts tissue architecture but also determines a progressive cellular hypertrophy and dilation of the extracellular space enlarging the volume of the organ. Such an alteration increases the distance between cells and vessels with a drop in pO2 that, in turn, causes both necrotic cell death and activation of the hypoxia transcription factor HIF-1α. Herewith, we propose the hypothesis that both cell death and hypoxia represent two important events for the pathogenesis of damage and progression of amyloidoses. In fact, molecules released by necrotic cells activate inflammatory cells from one side while binding to HIF-1α-dependent membrane receptors expressed on hypoxic parenchymal cells on the other side. This latter event generates a signaling cascade triggering NFκB activation and chronic inflammation. Finally, we also suggest that this scenario, once proved and detailed, might suggest important targets for new therapeutic interventions.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipóxia Celular/genética , Inflamação/genética , Amiloidose , Humanos
17.
Oxid Med Cell Longev ; 2019: 6387357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210843

RESUMO

Mitochondria are the cellular center of energy production and of several important metabolic processes. Mitochondrion health is maintained with a substantial intervention of mitophagy, a process of macroautophagy that degrades selectively dysfunctional and irreversibly damaged organelles. Because of its crucial duty, alteration in mitophagy can cause functional and structural adjustment in the mitochondria, changes in energy production, loss of cellular adaptation, and cell death. In this review, we discuss the dual role that mitophagy plays in cancer and age-related pathologies, as a consequence of oxidative stress, evidencing the triggering stimuli and mechanisms and suggesting the molecular targets for its therapeutic control. Finally, a section has been dedicated to the interplay between mitophagy and therapies using nanoparticles that are the new frontier for a direct and less invasive strategy.


Assuntos
Envelhecimento/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Nanoestruturas/uso terapêutico , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuínas/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Humanos , Neoplasias/patologia
18.
Cells ; 8(1)2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646605

RESUMO

Metformin has been shown to inhibit glutaminase (GLS) activity and ammonia accumulation thereby reducing the risk of hepatic encephalopathy in type 2 diabetic patients. Since tumour cells are addicted to glutamine and often show an overexpression of glutaminase, we hypothesize that the antitumoral mechanism of metformin could be ascribed to inhibition of GLS and reduction of ammonia and ammonia-induced autophagy. Our results show that, in different tumour cell lines, micromolar doses of metformin prevent cell growth by reducing glutamate, ammonia accumulation, autophagy markers such as MAP1LC3B-II and GABARAP as well as degradation of long-lived proteins. Reduced autophagy is then accompanied by increased BECN1/BCL2 binding and apoptotic cell death. Interestingly, GLS-silenced cells reproduce the effect of metformin treatment showing reduced MAP1LC3B-II and GABARAP as well as ammonia accumulation. Since metformin is used as adjuvant drug to increase the efficacy of Cisplatin-based neoadjuvant chemotherapy, we co-treated tumour cells with micromolar doses of metformin in the presence of cisplatin observing a marked reduction of MAP1LC3B-II and an increase of caspase 3 cleavage. In conclusion, our work demonstrates that the anti-tumoral action of metformin is due to the inhibition of glutaminase and autophagy and could be used to improve the efficacy of chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Metformina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amônia/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Cisplatino/farmacologia , Células HeLa , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Terapia Neoadjuvante
19.
Immun Ageing ; 15: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497453

RESUMO

BACKGROUND: Chronic rhinitis, pharyngitis and sinusitis are common health problems with a significant impact on public health, and are suspected to be influenced by ageing factors. Nasal inhalation with thermal water may be used to reduce symptoms, inflammation and drug intake. A pre-post clinical study was conducted in 183 consecutive adult and elderly patients with chronic rhinitis, pharyngitis or sinusitis, to evaluate whether thermal water nasal inhalations could improve their symptoms, clinical signs and rhinomanometry measurements, and influence inflammatory biomarkers levels in nasal epithelial cells. RESULTS: Participants profile revealed that they were aged on average (mean age and SD 60.6 ± 15.2 years, median 65, range 20-86, 86 aged ≤ 65 years (47%), 96 aged > 65 years (53%)) and extremely concerned about wellbeing. Older age was associated with better compliance to inhalation treatment. Total symptom and clinical evaluation scores were significantly ameliorated after treatment (p < 0.001), with no substantial difference according to age, while rhinomanometry results were inconsistent. Persistence of symptom improvement was confirmed at phone follow up 1 year later (n = 74). The training set of 48 inflammatory genes (40 patients) revealed a strong increase of CXCR4 gene expression after nasal inhalations, confirmed both in the validation set (143 patients; 1.2 ± 0.68 vs 3.3 ± 1.2; p < 0.0001) and by evaluation of CXCR4 protein expression (40 patients; 1.0 ± 0.39 vs 2.6 ± 0.66; p < 0.0001). CXCR4 expression was consistently changed in patients with rhinitis, pharyngitis or sinusitis. The increase was smaller in current smokers compared to non-smokers. Results were substantially unchanged when comparing aged subjects (≥ 65 years) or the eldest quartile (≥ 71 years) to the others. Other genes showed weaker variations (e.g. FLT1 was reduced only in patients with sinusitis). CONCLUSIONS: These results confirm the clinical impact of thermal water nasal inhalations on upper respiratory diseases both in adults and elders, and emphasize the role of genes activating tissue repair and inflammatory pathways. Future studies should evaluate CXCR4 as possible therapeutic target or response predictor in patients with chronic rhinitis, pharyngitis or sinusitis. TRIAL REGISTRATION: Communication to Italian Ministry of Health - ICPOM 000461. Registered 10/11/2014.

20.
Artigo em Inglês | MEDLINE | ID: mdl-29149822

RESUMO

BACKGROUND: Olive tree leaves have been used in the Mediterranean area as traditional medicine in virtue of their healthy effects. Olive leaf extracts (OLEs) contain higher amounts of polyphenols than those detected in the extra virgin olive oil and fruit. Several lines of evidence support the cardioprotective, anti-oxidant and anti-inflammatory activities exerted by OLEs. METHODS: Peripheral blood mononuclear cells from twenty-five healthy donors were cultured in the presence of 3 µg of two OLE extracts, extract A (resuspended in water) and extract B (resuspended in 70% ethanol). After harvesting, cell pellets were used for cytofluorimetric phenotyping, while supernatants were assayed for cytokine release by means of ELISA. Furthermore, in the same supernatants nitric oxide (NO) content was determined. RESULTS: Both extracts, but especially extract A, increased absolute numbers of CD8+ and natural killer (NK) cells. In addition, an increased production of interferon (IFN)-γ by both extracts as an expression of T helper (h)1 activation was observed. Finally, both extracts enhanced NO release. CONCLUSION: OLEs, and mostly extract A, are able to in vitro modify healthy human immune response by increasing IFN-γ production which seems to be associated to the higher absolute numbers of CD8+ and NK cells and this may suggest a reinforcement of the anti-tumor activity. Furthermore, increased levels of NO may indicate the potential cardioprotective effects exerted by OLEs in virtue of their vasodilation dependent activity. Finally, OLEs are able to maintain the equilibrium between T regulatory cells and Th17 cells as evidenced by unmodified levels of interleukin (IL)-IL-10 and IL-17, respectively. In the light of these results, OLEs are potential therapeutic compounds for the treatment of chronic inflammatory disease, also preventing cardiovascular event outcome.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Antioxidantes/metabolismo , Suplementos Nutricionais , Leucócitos Mononucleares/metabolismo , Olea/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Adulto , Bancos de Sangue , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Etanol/química , Humanos , Imunomodulação , Interferon gama/agonistas , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Pessoa de Meia-Idade , Solventes/química , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...